重心是三角形什么的交点
我们经常说我们生活中要把握好自己的重心,不要迷失方向,而在几何三角形中也存在重心,其实原理是相同的,只不过换了一种更专业的解释,让我们一起来学习吧。
重心是三角形什么的交点
重心是三角形三条中线的交点。三角形的三条中线必相交,交点命名为“重心”,重心分割中线段,线段之比二比一。
任何三角形都有五心,分别是重心、垂心、外心、内心、旁心。
重心:三角形三边中线的交点,为三角形的重心;在三角形的内部;重心到顶点的距离是到对边中点距离的2倍。
垂心:三角形三边高线的交点,为三角形的垂心;锐角三角形垂心在内部,直角三角形在直角顶点,钝角三角形在外部。
外心:三角形三边垂直平分线的交点,为三角形的外心;锐角三角形的外心在内部,直角三角形在斜边中点,钝角三角形在外部;此点为三角形外接圆的圆心,到三顶点的距离相等,这个距离叫外接圆半径R。
内心:三角形三内角平分线的交点,为三角形的内心;在三角形的内部,此点为三角形内切圆的圆心,到三边的距离相等,此距离为内切圆半径r。
旁心:三角形相邻二外角的平分线的交点,为三角形的旁心。任何三角形都有三颗旁心,且不相邻的内角平分线过旁心,旁心到三边的距离相等。
三角形重心定义及性质证明
三角形重心是三角形三中线的交点。当几何体为匀质物体且重力场均匀时,重心与该形中心重合。
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。
求证:EG=1/2CG
证明:过E作EH∥BF交AC于H。
∵AE=BE,EH//BF
∴AH=HF=1/2AF(平行线分线段成比例定理)
又∵ AF=CF
∴HF=1/2CF
∴HF:CF=1/2
∵EH∥BF
∴EG:CG=HF:CF=1/2
∴EG=1/2CG
方法二:连接EF
利用三角形相似
求证:EG=1/2CG 即证明EF=1/2BC
利用中位线可证明EF=1/2BC利用中位线可证明EF=1/2BC
2、重心和三角形3个顶点组成的3个三角形面积相等。
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知:
OA'=1/3AA'
OB'=1/3BB'
OC'=1/3CC'
过O,A分别作a边上高OH',AH
可知OH'=1/3AH
则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC
同理可证S△AOC=1/3S△ABC
S△AOB=1/3S△ABC
所以,S△BOC=S△AOC=S△AOB