手机端
当前位置: 91开学网

 > 

知识点

 > 

历史典故

 > 

抛物线的基本知识点

抛物线的基本知识点

2023-09-21 17:24:52 387浏览

在初中数学课本中,接触的二元一次方程,其实可以用抛物线来进行可直观的描述,方便解题。关于抛物线的一些基础知识,以下进行一些总结。

抛物线的基本知识点:

1、抛物线是一种圆锥曲线,指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

2、它有许多表示方法,例如参数表示,标准方程表示等等。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。

抛物线的几何性质:

(1)设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。

(2)过抛物线上一点P作准线的垂线PA,则∠APF的平分线与抛物线切于P。〈为性质(1)第二部分的逆定理〉从这条性质可以得出过抛物线上一点P作抛物线的切线的尺规作图方法。

(3)设抛物线上一点P的切线与法线分别交轴于A、B,则F为AB中点。

(4)设抛物线上除顶点外的点P的切线交轴于A,交顶点O的切线于B,则FB垂直平分PA,且FB与准线的交点M恰好是P在准线上的射影(即PM垂直于准线)。

(5)抛物线的三条切线所围成的三角形,其外接圆经过焦点。即:若AB、AC、BC都是抛物线的切线,则ABCF四点共圆。

(6)过抛物线外一点P作抛物线的两条切线,连接切点的弦与轴相交于A。又设P在轴上的射影为B,则O是AB中点。

(7)若抛物线与一个三角形的三条边(所在直线)都相切,则准线通过该三角形的垂心。

(8)焦点弦两端的切线互相垂直,并且垂足在准线上。

抛物线的发展历程:

Apollonius所著的八册《圆锥曲线》(Conics)集其大成,可以说是古希腊解析几何学一个登峰造极的精擘之作。今日大家熟知的 (椭圆)、(抛物线)、(双曲线)这些名词,都是 Apollonius 所发明的。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演着重要的角色。

抛物线的解析式求法:

1、以焦点在X轴上为例知道P(x,y),令所求为y=2px,则有y=2px,故2p=y/x,故抛物线为y=(y/x)x。

现总结如下:

(1)知道抛物线过三个点(x1,y1)(x2,y2)(x3,y3)设抛物线方程为y=ax²+bx+c,

将各个点的坐标代进去得到一个三元一次方程组,解得a,b,c的值即得解析式。

(2)知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),

设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。

(3)知道对称轴x=k,

设抛物线方程是y=a(x-k)²+b,再结合其它条件确定a,c的值。

(4)知道二次函数的最值为p,

设抛物线方程是y=a(x-k)²+p,a,k要根据其它条件确定。